КОНСТРУКТОРСКОЕ БЮРО "ФИЗЭЛЕКТРОНПРИБОР"

ОКП 42 1550

Анализаторы влажности (влагомеры) FIZEPR-SW100

Техническое описание и руководство по эксплуатации ВИГТ.415210.100 РЭ

Часть 2. Инструкция по настройке и описание программного обеспечения (ред. 1.05)

Самара, 2018

СОДЕРЖАНИЕ

1. Введение	3
2. Программа «SWPro» для работы с влагомерами FIZEPR-SW100	3
 2.1. Иденификация ПО	4 4 5
3. Настройка параметров связи	5
3.1. Описание параметров связи влагомера3.2. Изменение параметров связи влагомера	5 6
4. Алгоритм измерений влагомеров FIZEPR-SW100	7
 4.1. Основные параметры, измеряемые влагомером, контроль работы влагомера	7
5. Выполнение калибровки влагомера	12
6. Калибровочные (градуировочные) таблицы	13
 6.1. Окно для работы с калибровками 6.2. Порядок работы с калибровочными таблицами 6.2.1. Запись таблиц из файла во влагомер 6.2.2. Сохранение калибровки из влагомера в файл 6.2.3. Корректировка существующих таблиц 6.2.4. Создание калибровочных таблиц 6.2.5. Формат калибровочных таблиц 6.3. Калибровка по сухому веществу 	
7 Настройка токового выхола	19
8. Опции автоматического сохранения результатов измерения	20
8.1 . Автоматическое сохранение спектров	
9. Программа «SW100» для работы с влагомерами FIZEPR-SW100	22
 9.1. Иденификация ПО 9.2. Установка связи с влагомером	
10. Приложения	

1. Введение

1.1. Настоящее техническое описание и руководство по эксплуатации предназначены для ознакомления с программным обеспечением «SWPro» и «SW100» (далее - программы) влагомеров FIZEPR-SW100, а также с принципами измерения и методикой настройки указанных влагомеров.

1.2. Программное обеспечение предназначено для настройки влагомеров FIZEPR-SW100, диагностики их работы, а так же для отображения результатов измерений.

1.3. Программное обеспечение устанавливается на компьютер (ноутбук) с ОС Windows XP (и выше). Для работы с программой необходимы файлы «SWPro.exe» или «SW100.exe» и «Vlagomer.ini». Программа не нуждается в какой-либо инсталляции и может быть запущена из любого места (папки), в которое скопированы указанные файлы.

1.4. Связь компьютера с влагомером осуществляется по интерфейсу RS-485 через последовательный порт RS232 или USB. Для связи через порт USB могут быть использованы стандартные преобразователи интерфейсов USB - RS485, например, «OBEH-AC4» фирмы «Овен», «АЦДР.426469.032» фирмы НВП «Болид» и др.

1.5. Данное руководство подразумевает использование программ «SWPro» и «SW100» версии с номером 2.9 (и выше) и внутреннего программного обеспечения («прошивки» влагомера) версии номер 35 (и выше). Указанные программы не предназначены для запуска с компакт-диска. Для правильного использования программ необходимо скопировать их на компьютер или флеш-накопитель.

2. Программа «SWPro» для работы с влагомерами FIZEPR-SW100

Программа «SWPro» предназначена для настройки и диагностики работы влагомеров «FIZEPR-SW100», а так же для отображения результатов измерения.

Главное окно программы (см. рис.1) можно разделить на три части. Верхняя часть окна содержит меню и кнопки быстрого доступа для управления влагомером и программным обеспечением. Средняя часть представляет собой поле для прорисовки (отображения) графиков сигналов (спектров). В нижней части отображаются параметры связи и, собственно, данные измерений, полученные от влагомера, и основные параметры настройки влагомера.

Программа может работать как в режиме связи с влагомером, так без влагомера. Данные режимы называются соответственно «Приём» и «Анализ».

В режиме «Приём» компьютер принимает данные от влагомера и отображает их на экране в режиме реального времени. В этом режиме также можно изменять настройки и режимы работы влагомера.

Полученные от влагомера данные можно сохранить с помощью кнопки «Сохранить» на панели быстрого доступа или через пункт меню «Файл|Сохранить...».

В режиме «Анализ» приём данных от влагомера не ведётся и, также невозможна передача команд влагомеру. В этом режиме возможен лишь просмотр уже полученных данных или данных, сохранённых ранее в файл.

Рис.1

Сохранённые ранее файлы можно открыть с помощью кнопки «Открыть» на панели быстрого доступа, либо с помощью команды меню «Файл|Открыть…».

Переключение между этими двумя режимами происходит с помощью кнопок на панели быстрого доступа с соответствующими названиями.

Если в режиме «Приём» открыть сохранённый файл, то программа автоматически переходит в режим «Анализ» и приём данных прекращается.

2.1. Иденификация ПО

В главном окне программы, в левом верхнем углу отображается иконка программы, название (идентификатор программы) «SWPro» и номер версии ПО (см. рис. 1).

2.2. Файлы конфигурации влагомера

Как было указано выше, данные, полученные от влагомера, не только отображаются посредством интерфейса программы «SWPro», но и могут быть сохранены в файл.

Сохранение конфигурации производится выбором пункта меню «Файл|Сохранить...».

Сохраняемые файлы конфигурации имеют расширение «.cfg».

В составе сохраненных данных находятся все настройки влагомера, включая номер текущей используемой калибровочной таблицы и саму калибровочную таблицу (см. главу «Калибровочные таблицы»).

Кроме того, сохраняется график изменения влажности в том виде, в котором он отображается в данный момент в окне «График влажности…». Файл конфигурации «... .cfg» содержит исчерпывающую информацию о работе влагомера и может быть использован для диагностики работы влагомера предприятиемпроизводителем или другим лицом, прошедшим обучение.

Файл конфигурации может быть использован для удаленной перенастройки влагомера или восстановления заводских настроек. Для этого файл нужно загрузить во влагомер с помощью команды меню «Настройка|Загрузить конфигурацию из фала во влагомер...».

Следует различать команды «Файл|Открыть...» и «Настройка|Загрузить конфигурацию из файла во влагомер...».

Первая команда служит для *просмотра* сохраненных параметров влагомера, а также графиков спектра и влажности. Для этого программа автоматически переходит в режим «Анализ».

Вторая команда служит для *перенастройки* влагомера в соответствии с параметрами, содержащимися в файле конфигурации. Загрузка конфигурации во влагомер возможна только в режиме «Приём» и когда связь с влагомером установлена.

2.3. Удаленная диагностика влагомера

Как указывалось выше, сохраненные файлы конфигурации позволяют оценить работоспособность влагомера, в том числе удалённо.

Для этого файлы конфигурации отсылаются по почте или иным способом на предприятие-производитель влагомеров или авторизованному дилеру.

Для отправки следует сохранить несколько файлов конфигурации (3-5 штук) с интервалом в 1-2 минуты. Несколько файлов конфигурации позволяют оценить, как меняется состояние влагомера в течение времени.

3. Настройка параметров связи

3.1. Описание параметров связи влагомера

Приём данных от влагомера и его настройка возможны только в режиме «Приём» и только когда связь с влагомером успешно установлена.

Параметры связи задаются в окне настроек (рис.2), доступном в пункте меню «Настройка|Параметры связи...».

Параметры связи	×
Параметры порта ПК для связи с влагомером	
Порт связи СОМ7 💌	
Скорость передачи (бод) 19200 💌 2 стоп-бита	-
Тайм-аут ожидания ответа (мс) 100 🗲	
Адрес MODBUS 127 🚖	Применить
Новые параметры связи влагомера Скорость передачи (бод) 19200 т 2 стоп-бита т Адрес MODBUS 127 т	Применить

Рис.2

Все необходимые настройки для установления связи находятся в верхней части вклад-ки:

- Порт связи – это порт, к которому подключен влагомер. При использовании преобразователи интерфейсов (переходников) USB-RS485 операционная система (Windows) сама назначает номер порта для каждого конкретного переходника. Узнать номер порта и получить доступ к настройкам переходников (при их наличии) можно посредством диспетчера устройств ОС Windows. Номер порта для переходников USB-RS485 должен быть в диапазоне от 3 до 9 включительно. Ели это не так, то номер порта можно принудительно изменить посредством диспетчера устройств ОС Windows.

- Скорость передачи данных, количество стоп-битов и адрес MODBUS устанавливаются на известные для данного влагомера значения. Если это вновь приобретённый влагомер, то берутся значения, установленные «по умолчанию» (указаны в паспорте влагомера).
- В поле «Таймаут ожидания ответа» указывается время в миллисекундах между отправками запросов к влагомеру по протоколу MODBUS. Оптимальный тайм-аут для скорости 19200 бод составляет 100 мс. Рекомендуемый тайм-аут устанавливается автоматически при выборе новой скорости передачи. Однако, если связь неустойчива в результате дополнительных временных задержек ОС, допускается увеличение тайм-аута. Увеличение тайм-аута более чем на 50% не целесообразно и причины неустойчивой связи следует искать в другом.

После выбора всех необходимых параметров нужно нажать на кнопку «Применить».

Текущие установленные параметры связи, а именно: выбранный СОМ-порт, скорость и адрес MODBUS отображаются в статусной строке по нижнему краю главного окна программы (соответственно 1, 2 и 3 поля слева на право). Если был выбран несуществующий или занятый другой программой порт, то появляется сообщение о невозможности инициализировать порт. Поля, соответствующие номеру открытого порта и установленной скорости, в этом случае остаются пустыми.

Если СОМ-порт выбран правильно и правильно подключена линия связи RS485, а также правильно указаны скорость связи, количество стоп-битов и адрес MODBUS, то во втором справа окне статусной строки появится надпись «Связь ОК». В противном случае появится надпись «Нет связи».

3.2. Изменение параметров связи влагомера

При необходимости изменить сетевой адрес влагомера или скорость обмена с ним в окне «Новые параметры связи влагомера» есть поля для задания этих параметров. После изменения параметра необходимо нажать на кнопку «Установить!».

Если при попытке изменить параметры влагомера связь с влагомером оказалась потеряна, то следует вернуть те параметры связи, которые были до изменения, и восстановить связь.

Примечание 1. Изменение настроек связи влагомера возможно только (!) когда соединение с влагомером установлено.

Примечание 2. Если связь с влагомером не удаётся установить или его настройки не известны, то можно произвести сброс настроек, после которого влагомер вернётся к настройкам по умолчанию.

Для сброса сетевых настроек и восстановления заводских настроек влагомера нужно нажать и удерживать не менее 5 секунд кнопку «Сброс», которая находится справа на нижней плате электронного блока под вырезом верхней платы (показана стрелкой на фотографии в приложении 1.

4. Алгоритм измерений влагомеров FIZEPR-SW100

Коэффициент замедления электромагнитной волны в материале $k_{зам}$ вычисляется согласно формуле:

$$k_{3aM} = f_0 / f_M$$

где f_0 – резонансная частота пустого датчика (датчик заполнен воздухом);

 f_M – резонансная частота датчика при его заполнении контролируемым материалом.

Необходимо отметить, что частота f_0 определяется один раз при изготовлении датчика (для влагомеров сыпучих материалов - после монтажа датчика на оборудовании) и запоминается в процессоре влагомера. Эта операция называется «калибровкой по пустому резонатору».

Процесс измерения заключается в периодическом измерении резонансной частоты f_M и вычислении значения коэффициента замедления k_{3am} .

Влажность W материала определяется по измеренному значению k_{3aM} . Вычисление влажности W производится с помощью калибровочных таблиц, представляющих собой таблицы соответствия между коэффициентом замедления k_{3aM} , влажностью и температурой.

Таким образом, основная функция влагомера состоит в периодическом поиске резонансной частоты f_M датчика, измерении температуры и вычислении влажности на основе этих параметров.

4.1. Основные параметры, измеряемые влагомером, контроль работы влагомера

Как было указано выше, влагомер производит периодические измерения резонансной частоты и температуры. Все остальные параметры вычисляются на их основе.

Все главные измеряемые и вычисляемые параметры отображаются внизу главного окна на панелях «Средние параметры» и «Результат измерения» (рис.3):

Результат измере	ния	Средние пар	раметры
0.00.%	N=1	Екалиб	390,0 МГц _{k=} 1,2080
0,00 70	t=27 град С	Fpes 322,8 МГц A=0	

Средние параметры:

- **F**_{калиб} резонансная частота пустого датчика (f_0);
- **F**_{рез} средняя резонансная частота измеряемая влагомером в данный момент (*f*_M);
- **k** коэффициент замедления электромагнитной волны в материале ($k_{3am} = f_0 / f_M$);

- А – уровень (напряжение) выходного сигнала в точке резонанса.

В окне «Результат измерения» отображается влажность в процентах, вычисленная по калибровочным таблицам, а также температура (t = ... град C) и текущий параметр усреднения измерений (N =).

4.2. Алгоритмы определения резонансной частоты

Поиск резонансной частоты производится путём перестройки генератора высокой частоты и измерения напряжения U(f) сигнала на входе датчика.

В результате получается зависимость (функция) напряжения U(f) от частоты, которая представлена в процессоре влагомера в виде массива пар значений (U, f). В программе «SWPro» эта зависимость отображается на графике (спектре) линией красного цвета.

Перестройка частоты генератора производится от минимальной частоты F_{min} до максимальной F_{max} с шагом $F_{S}.$

Значения частот F_{min} , F_{max} и F_S задаются в диалоговом окне «Настройка|Диапазон перестройки частоты» (рис.4).

Диа	пазон перестройки	частоты	X
	Текущие значени	ия	
	Нижняя	40,0	МГц
	Верхняя	750,0	МГц
	War	1,0	МГц
	Новые значения		
	Нижняя	40,0	МГц
	Верхняя	750,0	МГц
	War	1,0	МГц
	Cox	ранить	1
	n	4	

Рис.4

По умолчанию F_{min} =40 МГц, F_{max} =750 МГц, шаг перестройки F_S =1 МГц.

Новые значения вводятся в нижней части окна и нажимается кнопка «Сохранить».

Влагомер генерирует частоты в указанных пределах и с указанным шагом.

На каждом шаге влагомер оцифровывает уровни напряжений на входе первичного преобразователя и на выходе генератора и вычисляет их отношение. Программа «SWPro» позволяет визуализировать эти напряжения в виде графиков зависимости этих напряжений от частоты (частотный спектр сигналов). Напряжение на выходе генератора отображается линией желтого цвета, а уровень ненормированного напряжения на входе первичного преобразователя – зелёным цветом.

Напряжение U(f) (красная линия) – это напряжение на входе первичного преобразователя, нормированное к напряжению на выходе генератора.

Существует несколько алгоритмов поиска резонансной частоты на основе данных вышеупомянутого массива (U, f).

Выбор алгоритма производится в диалоговом окне «Настройка алгоритма», меню «Настройка |Настройка алгоритма» (рис.5).

Алгоритм 0

Резонансная частота принимается равной частоте, на которой значение напряжения U(f) имеет минимальное значение в заданном диапазоне перестройки F_{min} - F_{max} . Точность определения резонансной частоты равна шагу перестройки F_{S} .

Рис.5

Алгоритм 1

Резонансной частотой считается та частота, на которой кривая имеет достаточно глубокий минимум сигнала, который удовлетворяет условиям, заданным в настройках алгоритма поиска. Если минимумов несколько, то из всех минимумов выбирается тот, у которого частота меньше (первый минимум слева).

Нахождение минимума производится путем анализа уровней U(f) на интервале частот df = f2-f1 (df задаётся в меню «Настройка|Настройка алгоритма|Ширина минимума»). Величина df выражена в шагах Fs перестройки частоты. Указанный интервал частот поиска строится последовательно от каждой точки графика U(f) в правую сторону.

Минимум считается найденным, если на очередном анализируемом интервале частот f2-f1 выполняются одновременно три условия:

1) $U(f1) \le U(f2)$. Это условие означает, что для анализа берётся только тот интервал df, для которого точка графика, соответствующая правому концу интервала, выше или равна точке, соответствующей левому концу (см. рисунок 1).

2) Dp > Dp₀, где Dp₀ задаётся параметром "Глубина минимума", выраженным в отсчётах АЦП (см. меню «Настройка | Настройка алгоритма |Глубина минимума»). «Глубина минимума» определяет степень «выпуклости» минимума.

3) U(f2) - U(f1) < U_{max}, где U_{max} – задаётся параметром "Негоризонтальность" в меню «Настройка|Настройка алгоритма|Негоризонтальность». Этот параметр позволяет отсеивать возможные помеховые выбросы на графике U(f), имеющие большую крутизну фронтов. Если вышеупомянутые условия выполнены, то резонансная частота f_M определяется по формуле: $f_M = (f1+f2)/2$.

Точность определения резонансной частоты по этому алгоритму составляет 0,1 МГц. Если минимум, удовлетворяющий этим условиям, не найден, то в качестве минимума берётся резонансная частота, найденная по Алгоритму 0 (абсолютный минимум) с точностью, равной шагу F_s .

Алгоритм 2

В качестве резонансной частоты принимается частота, найденная по алгоритму 0, но если абсолютный минимум находится ниже его по частоте более чем на величину перескока частоты (см. п.4.4), то в качестве резонансной частоты берётся частота, найденная по алгоритму 1.

Алгоритм 3

В качестве резонансной частоты принимается частота абсолютного минимума, найденного на интервале частот, удовлетворяющем тем же условиям, что и интервал по алгоритму 1. При этом, точность его определения равна шагу перестройки.

Рис.6

Алгоритм 4

В качестве резонансной частоты принимается точка пересечения хорд, проведенных через точки пересечения основного отрезка, найденного по алгоритму 1, и точки пересечения отрезка, проведенного посередине между основным отрезком и точкой абсолютного минимума.

Алгоритм 5

В качестве резонансной частоты принимается частота, определенная методом двойной вилки, уточняя тем самым минимум, найденный методом обычной вилки. То есть частота, соответствующая точке пересечения линии, проведённой через середины отрезков, упомянутых в алгоритме 4, и линии, проведенной на уровне абсолютного минимума.

4.3. Усреднение результатов измерения

При измерении реального сигнала на результат оказывает влияние не только сама измеряемая величина, но и посторонние мешающие факторы: шумы электронных схем прибора и особенности технологического процесса. Для влагомера такими факторами могут являться:

- флуктуации свойств измеряемой среды, связанные, например, с включениями пузырьков газа или включениями осадка в потоке жидкости;

- расслоение жидкости, неравномерность распределения воды в объеме жидкости.

В результате измеренная влагомером частота от измерения к измерению может изменяться, что приводит к колебаниям вычисленной величины влажности. Для уменьшения влияния этих факторов следует использовать усреднение.

При усреднении частоты для вычисления влажности используется не текущее измеренное значение частоты, а среднее значение по последним N измерениям. Параметр N – «Усреднение частоты» задаётся в окне «Настройка алгоритма». В программе «SW100» для этого имеется вкладка «Усреднение» (см. п.9.4). При значении параметра N, установленном равным 0 или 1, усреднение не производится.

Примечание. Следует помнить, что время измерения (время установления достоверного результата измерения) прямо пропорционально значению константы усреднения и примерно равно утроенному значению периода измерений. Например, если период измерения составляет 1сек, то время установления сигнала рано 3сек.

4.4. Фильтрация «выпадающих» измерений

Фильтрация «выпадающих» значений позволяет не включать в процесс усреднения те значения, которые сильно отличаются от средних за период усреднения. Фильтрация данного типа позволяет избежать влияния внезапных изменений в техпроцессе.

Фильтрация производится по следующему алгоритму.

При очередном измерении резонансной частоты происходит сравнение усредненной частоты с частотой, только что измеренной, и если отличие составляет величину, большую чем параметр «Перескок частоты», то вместо текущей измеренной («выпадающей») частоты подставляется среднее значение. При этом процесс измерения и усреднения продолжается так, как будто скачка не было.

Параметр «Перескок частоты» задается в окне «Настройка алгоритма» в десятых долях МГц.

Управление фильтрацией «выпадающих» значений производится посредством параметра «Лимит отбрасывания» в окне «Настройка алгоритма».

Если этот параметр равен нулю, то фильтрация отключена.

Если параметр равен 1, то производится отбрасывание одного случайного «выпавшего» измерения и усреднение продолжается.

Если параметр равен 2, то допускается два подряд идущих «выпавших» измерения. Если параметр равен 3 – то трём, и так далее.

Если «выпадение» продолжается большее число раз, чем указано в настройке, то считается, что резонансная частота изменилась и процесс усреднения начинается сначала, при этом используются текущие измеренные значения.

Если фильтрация отключена («Лимит отбрасывания»=0), то усреднение начинается сначала каждый раз, когда очередная измеренная резонансная частота оказывается отличающейся от средней более, чем указывает параметр «Перескок частоты».

Фильтрация «выпадающих» значений имеет смысл только если включено усреднение результатов измерений (см. п.4.3), так как решение об отбрасывании очередного измерения производится путём сравнения со средним значением.

4.5. Приближённая оценка измеряемых параметров и правильности работы

График спектра даёт общее представление о работе влагомера и позволяет оценить её правильность. Значение резонансной частоты при заполнении датчика материалом можно определить по спектру – по виду резонансной кривой. На резонансной кривой исправного влагомера должен быть четко виден минимум сигнала.

Значение частоты, на которой достигается минимум сигнала, можно определить с помощью инструмента «Визир» с точностью до единиц МГц.

В «SWPro» имеется два таких визира. Включение и выключение отображения визиров производится с помощью пункта меню «Вид|Визир 1…» или «Вид|Визир 2…».

Каждому визиру соответствует поле (под графиком спектра) с указанием частоты, на которой «находится» визир, и измеренных на этой частоте амплитуд сигналов. Перемещение визиров производится с помощью нажатия левой кнопки мыши. Для определения частоты нужно передвинуть визир в интересующее место спектра и прочитать значение частоты в окне, соответствующем номеру визира.

Если определённая таким образом частота, на которой достигается минимум сигнала, примерно равна (с точностью до единиц МГц) частоте, измеренной влагомером (Fpe3), то влагомер настроен верно и работает правильно.

4.6. Дополнительная диагностическая информация

Для включения/отключения окон дополнительной информации нужно сделать двойной щелчёк мышью по панели, находящейся слева от панели «Диапазон перестройки частоты» (в правой нижней части главного окна). В результате, вместо кнопок калибровки появятся окна с дополнительными параметрами (рис.7).

<u>€ 0,0</u> <u>Визир1</u> 213,3 М	ИГц -:-:-			<u>Визир2</u> 625,4	МГц -:-:-	▲ ▶ 800,0 😫 ⊘
Результат измерения 0,00 % N=1 t=546.2 гр	Средние парамо Fкалиб рад C Fpes	тры 622,1 МГц _{k=} 1,00022 621,962 МГц _{A=} 2	Резонанс 621,962 МГц Dp=232 A=2	Минимум f=621,0 МГц A=2	Максимум f=750,0 МГц A=5790	Диапазон перестройки частоты Нижняя Верхняя Шаг 40,0 МГц 750,0 МГц 1,0 МГц
СОМ9 19200 Бод Адр: 127 Р	=408,3 МГц НЕТ:НЕТ:НЕТ	Bep.:38 s/n: 17133	dF=412,1 МГц F	2/F1=2,93 Fmic	I=419,4 МГц	Ошибка: 0 Связь ОК (11) ТАВ //

Рис.	7
• •	

Окно «Минимум» отображает частоту f, на которой напряжение на входе датчика имеет минимальное значение (поиск производится по Алгоритму 0). Величина сигнала в минимуме выводится в виде значения A.

Окно «Максимум» отображает частоту f, на которой напряжение на входе датчика имеет максимальное значение, обозначенное также через A.

Окно «Резонанс» содержит следующую информацию:

f - резонансная частота, определенная по текущему выбранному алгоритму.

А – уровень сигнала в точке минимума на интервале df (см. рис. 6).

Dp – "глубина минимума", измеренная по Алгоритму 1 (см. рис. 6).

Примечание 1. Значение Dp можно использовать для оценки запаса чувствительности при определении резонансной частоты по Алгоритму 1. То есть для надежной работы прибора величина Dp должна иметь значение большее, чем Dp₀, указанное в настройках «Настройка Алгоритма|Глубина минимума».

Примечание 2. Значение Dp актуально только когда найден минимум, удовлетворяющий трём условиям Алгоритма 1. В остальных случаях отображаемое значение не определено и может быть любым.

Примечание 3. Признаком того, что минимум по Алгоритму 1 не найден, может являться абсолютное равенство частот в окне «Минимум» и «Резонанс».

5. Выполнение калибровки влагомера

Для вычисления влажности используются калибровочные таблицы, которые задают однозначное соответствие между измеренным коэффициентом замедления $k_{зам}$ и влажностью *W* материала при определенной температуре.

Резонансная частота пустого датчика – f_0 определяется один раз при изготовлении датчика (для влагомеров сыпучих материалов - после монтажа датчика на оборудовании) и запоминается во внутренней памяти прибора. Этот процесс называется калибровкой по пустому резонатору, а сама частота f_0 называется калибровочной частотой влагомера.

Таким образом, калибровочная частота f_0 запоминается в памяти влагомера по команде пользователя, когда датчик влагомера пуст (не заполнен измеряемым материалом).

Исходя из физического смысла калибровки измеренный влагомером коэффициент замедления k_{3aM} после выполнения калибровки должен быть равен $k_{3aM} = 1\pm 0,0002$.

Если измеренный влагомером коэффициент замедления $k_{зам}$ отличается от единицы (при условии, что датчик пуст) более, чем на 0,0002, то это может быть следствием недостаточной степени очистки и просушивания внутренней поверхности влагомера. Причиной может также являться неправильная калибровка, в этом случае требуется провести повторную калибровку влагомера.

Калибровка проводится только на чистом и сухом датчике. Для такой калибровки датчик влагомера жидких материалов промывается органическим растворителем или спиртом и тщательно просушивается.

Калибровка может быть выполнена двумя способами:

Способ 1. Нажатием кнопки «Калибровка по пустому резонатору». При этом влагомер запоминает текущую измеряемую частоту во внутренней памяти.

Способ 2. Прямым вводом значения частоты (с точностью до десятых долей МГц). Для этого нужно выбрать пункт меню «Настройка|Калибровочная частота...» и в появившемся окне (рис.8) ввести требуемое значение, полученное на основе измеренной влагомером частоты, паспортное значение этого параметра или определенное иным способом (например, если резонансная частота датчика оказалась вне диапазона перестройки частоты влагомера).

Рис.8

6. Калибровочные (градуировочные) таблицы

По своему принципу действия влагомер является измерителем диэлектрической проницаемости \mathcal{E}_{p} . Пересчёт диэлектрической проницаемости (или k_{3aM}) во влажность W производится процессором на основе калибровочных (градуировочных) таблиц, в которых заложено соответствие между указанными параметрами. В общем случае, для каждого контролируемого материала существует своя функциональная зависимость между проницаемостью и влажностью. Причем, указанная функциональная зависимость привязана к конкретной температуре материала.

Во влагомере может храниться до 100 различных калибровок.

Переключение калибровок может производиться в диалоговом окне для работы с калибровками, либо через цифровой интерфейс MODBUS посредством регистров, указанных в части 1 разделе 12.

В ряде случаев при построении автоматизированных систем пересчет диэлектрической проницаемости во влажность удобнее проводить не в процессоре влагомера, а средствами самой автоматизированной системы. Такое решение может оказаться удобным при необходимости оперативной смены калибровок в ходе техпроцесса (например, при дозировании разных видов материалов), так как позволяет исключить программирование сложных алгоритмов переключения калибровок посредством линий связи.

В этом случае от влагомера принимается только температура и значение коэффициента замедления, которые преобразуется во влажность во внешней системе управления.

Каждая калибровка представляет собой таблицу соответствия между коэффициентом замедления k_{3aM} (функция от ε_r) и влажностью W. Таких таблиц для каждого материала – четыре, причем, каждая из этих таблиц составляется для определённой температуры. Первая таблица составляется для самой низкой температуры измеряемого материала, а четвёртая — для самой высокой.

Замечание. Коэффициент замедления k_{3am} – это отношение резонансной частоты датчика при заполнении его воздухом к резонансной частоте при заполнении контролируемым материалом. Указанный коэффициент равен отношению скорости электромагнитной волны в вакууме (в воздухе) к скорости распространения волны в материале (см. главу 4). Данный параметр в технической литературе называют также показателем преломления материала. При малых диссипативных потерях для распространяющейся в материале электромагнитной волны показатель преломления связан с диэлектрической проницаемостью выражением:

$$\varepsilon_r = k_{_{3AM}}^2$$

Калибровочная таблица представляет собой набор из 15 точек (пар значений k_{3am} , W), которые используются процессором для задания функции $W = W(k_{3am})$. Влажность W вычисляется процессором путём линейной интерполяции промежуточных значений коэффициента замедления k_{3am} на соответствующем отрезке функции $W = W(k_{3am})$.

6.1. Окно для работы с калибровками

Чтобы получить доступ к таблицам в главном окне программы «SWPro» надо выбрать пункт меню «Настройка|Калибровочные таблицы...». После этого появится окно (рис.9) с заголовком «Калибровочные таблицы», в котором находятся элементы управления и отображения, необходимые для просмотра и внесения изменений в таблицы. Данное окно по внешнему виду и своей функциональности полностью аналогично такому же окну в программе «SW100» (см. раздел 9).

Рис.9

Окно можно условно разделить на три части:

- в левой части находятся элементы управления окном;

- в средней части – текущая таблица преобразования;

- в правой части – графическое представление табличных данных.

При первом открытии данного окна отображаются данные первой таблицы, находящейся в памяти влагомера (считается, что связь с влагомером ранее уже установлена).

Выбор отображаемой таблицы производится путём выбора нужного пункта на панели «Выбор таблицы». При этом вверху таблицы показывается температура, соответствующая данной таблице. Панель «Единицы измерения» позволяет выбрать представление измеряемой прибором величины в виде коэффициента замедления $k_{зам}$ или относительной диэлектрической проницаемости ε_r .

Коэффициент коррекции показывает, используется ли смещение калибровки, вычисленное после операции «Калибровка по сухому веществу» (см. п.6.3). Для вновь создаваемых или редактируемых таблиц коэффициент коррекции равен нулю.

Существует два режима работы с таблицами: «Чтение» и «Редактирование», переключаемые в соответствующем поле «Режим работы».

В режиме «Чтение» (включен по умолчанию) возможен только просмотр таблиц, хранящихся в памяти влагомера.

В режиме «Редактирование» становятся доступными правка таблиц, запись калибровки во влагомер, сохранение калибровки в файл и открытие калибровки из файла.

Так как каждая калибровка состоит из четырёх таблиц, то сначала нужно выбрать интересующую калибровку. Это делается в верхнем левом углу окна путём ввода в поле «Номер текущей калибровки» её номера.

Общее количество записанных во влагомер калибровок отображается под этим полем.

Примечание. Необходимо помнить, что выбранная таким образом калибровка сохраняется в памяти влагомера и дальнейшие вычисления в рабочем режиме будут выполняться по ней.

При необходимости добавить ещё одну калибровку или удалить текущую необходимо нажать соответствующие кнопки «Добавить» или «Удалить».

Для быстрой идентификации программа SWPro (а также программа SW100) подсчитывает контрольную сумму текущей калибровки и отображает её в поле под графиком. При поставке влагомера в паспорте указываются контрольные суммы всех калибровок, записанных во влагомер. Таким образом, можно определить целостность калибровок не прибегая к их построчному сравнению между собой.

После выбора калибровки можно приступать к действиям с калибровочными таблицами.

6.2. Порядок работы с калибровочными таблицами

6.2.1. Запись таблиц из файла во влагомер

Запись калибровочных таблиц во влагомер производится в следующем порядке:

- 1) установить связь с влагомером;
- 2) открыть окно для работы с калибровочными таблицами (рис.9);
- 3) перейти в режим «Редактирование»;
- 4) нажать кнопку «Открыть таблицу из файла...» и в появившемся стандартном диалоговом окне выбрать желаемый файл;
- 5) после этого нажать кнопку «Записать таблицу во влагомер».

Примечание 1. При создании и редактировании таблиц следует учитывать, что таблице с меньшим номером должна соответствовать таблица для меньшей температуры.

Примечание 2. Если для данного вида измеряемого материала используется характеристика, не зависящая от температуры, то одни и те же данные записываются во все четыре таблицы влагомера, но при этом для каждой таблицы перед записью во влагомер (шаг 5) следует вручную указать температуру в соответствии с *Примечанием 1*.

6.2.2. Сохранение калибровки из влагомера в файл

Для того чтобы сохранить имеющиеся в памяти влагомера таблицы, необходимо выполнить следующие шаги:

- 1) перейти в режим «Редактирование»;
- 2) нажать кнопку «Сохранить таблицу в файл...» и в появившемся стандартном диалоговом окне указать желаемое имя файла;

6.2.3. Корректировка существующих таблиц

Если в процессе эксплуатации влагомера возникнет необходимость корректировки калибровочных характеристик, то при этом рекомендуется придерживаться такого порядка действий:

- 1) перейти в режим «Редактирование»
- 2) сохранить имеющиеся в памяти влагомера таблицы согласно п.6.2.2;
- 3) внести желаемые изменения в текущую таблицу (или открыть новую из файла);
- 4) записать её во влагомер;
- 5) сохранить калибровку в файл в соответствии с п.6.2.2.

6.2.4. Создание калибровочных таблиц

Для создания новой калибровочной характеристики гораздо удобнее подготовить таблицу с помощью какой-нибудь специализированной общеизвестной программы (например, MS Excel) и сохранить её в формате, пригодном для записи во влагомер с помощью программы «SW100» или «SWPro».

Для записи и сохранения таблиц указанные программы использует стандартный формат CSV (переменные, разделяемые запятыми), который поддерживается, в частности, редактором таблиц MS Excel.

6.2.5. Формат калибровочных таблиц

Калибровочная характиристика влагомера представляют собой набор из четырёх таблиц файла CSV или Excel. Каждая таблица состоит из пятнадцати строк, задающих соответствие между коэффициентом замедления k_{3am} и влажностью W.

> 283 F 1,57 0 2 1,76 8,44 3 1,94 15,5 2,06 2,21 20,1 4 24,5 5 2,52 32,6 6 2,65 36,1 8 .79 39 2 9 3,04 44,8 10 3,29 50,3 56,8 11 3,63 12 3,83 60 13 4,95 70 14 6,75 83 15 9,15 100 F 298 1,57 0 1 2 1,76 8,44 3 1,94 15,5 2,06 4 20,1 5 2,21 24,5 2.52 32,6 6 2,65 36,1 8 2,79 39,2 9 3,04 44,8 10 3,29 50,3 11 3,63 56,8 3,83 12 60 13 70 4,95 14 6,75 83 9,15 100 15 F 308 1,57 0 1 2 1,76 8,44 3 1.94 15.5 4 2,06 20,1 5 2,21 24,5 2,52 6 32,6 2,65 7 36,1 8 2,79 39.2 3,04 44,8 9 10 50,3 3,29 11 3,63 56,8 12 3,83 60 13 4,95 70 14 6,75 83 15 9,15 100 318 F 0 1 1,57 1,76 2 8,44 3 1,94 15,5 2,06 20,1

Ниже показано, как должна выглядеть таблица в формате Excel:

5	2,21	24,5
6	2,52	32,6
7	2,65	36,1
8	2,79	39,2
9	3,04	44,8
10	3,29	50,3
11	3,63	56,8
12	3,83	60
13	4,95	70
14	6,75	83
15	9,15	100

Калибровочная таблица составляется с соблюдением ряда правил.

Первая строка служит для указания температуры (в градусах Кельвина), которой соответствует данная таблица. В первой ячейке должен быть служебный символ F (латинская буква). Во второй ячейке – значение температуры в градусах Кельвина. Третья ячейка – пустая.

Все последующие строки служат для представления опорных точек калибровочной характеристики. Каждая строка состоит из трёх столбцов. В первом столбце порядковый номер точки - от 1 до 15. Во второй – значение коэффициента замедления материала. В третьей ячейке – соответствующее ему значение влажности в процентах. Необходимо составлять таблицу таким образом, чтобы ячейке с меньшим порядковым номером соответствовала точка с меньшим значением коэффициента замедления.

При составлении таблиц коэффициент замедления следует указывать не более чем с четырьмя знаками после запятой, влажность - не более чем с двумя знаками после запятой.

Примечание 1. Таблица не должна содержать коэффициенты замедления меньше 1.

Примечание 2. Если калибровочная таблица содержит хотя бы один коэффициент замедления больший чем 13, то точность представления коэффициента автоматически уменьшается до 2 знаков после запятой с соответствующим округлением ранее введённых значений. В этом случае значение наименьшего из использованных в таблице коэффициентов замедления должно быть меньше 50.

Примечание 3. Каждая таблица должна содержать 15 точек калибровки. Если калибровочных точек меньше, чем пятнадцать, то в таблицу вносятся все имеющиеся точки по указанным выше правилам, а недостающие строки формируются путём копирования (дублирования) строки с наибольшим для данной таблицы коэффициентом замедления.

Созданная по этим правилам таблица Excel сохраняется в формате CSV. После этого таблица готова к использованию программами «SW100» и «SWPro».

6.3. Калибровка по сухому веществу

Калибровка по сухому веществу может потребоваться для подстройки калибровочной характеристики, например, при смене сорта нефти.

Суть калибровки по сухому веществу состоит в том, что влагомер автоматически прибавляет некоторую величину (коэффициент коррекции) к измеренному коэффициенту замедления без изменения калибровочной таблицы, т.е. фактически производит параллельный сдвиг графика калибровочной зависимости вдоль оси абсцисс (см. рис.9).

Величина корректирующего коэффициента $K_{\kappa opp}$ для уточнения коэффициента замедления рассчитывается автоматически при нажатии на кнопку «Калибровка по сухому веществу». Влагомер производит расчет по следующей формуле:

$$K_{\kappa opp} = K_{3aм. maбл} - K_{3aм. uзм}$$
,

где $K_{\kappa opp}$ – коэффициент коррекции (величина сдвига коэффициента замедления);

К_{зам. табл} – коэффициент замедления из первой сроки первой температурной таблицы действующей калибровки;

*К*_{зам. изм} – измеренный в момент калибровки коэффициент коррекции.

Важно! Для проведения калибровки по сухому веществу необходимо, чтобы материал, по которому проводится калибровка, не содержал влагу.

После завершения калибровки по сухому веществу во влагомере к измеренному коэффициенту замедления $K_{зам. uзм}$ всегда будет прибавляться значение $K_{корр}$:

$$K_{3am.\ ckopp} = K_{3am.\ u3m} + K_{kopp},$$

где $K_{зам. ckopp}$ – скорректированный коэффициент замедления, по которому будет производиться вычисление влажности из калибровочных таблиц.

Значение коэффициента коррекции K_{kopp} может быть как положительным, так и отрицательным. По модулю коэффициент коррекции K_{kopp} не должен быть больше, чем 0,32767. Значение коэффициента коррекции можно увидеть в окне «Калибровочные таблицы» непосредственно под таблицей калибровки (рис.9).

Примечание 1. Слишком большое значение коэффициента коррекции $K_{\kappa opp}$ (более чем 0,01...0,02) может говорить о том, что его использование для данного материала не целесообразно, вместо калибровки по сухому веществу необходимо выполнить полную калибровку на новом материале.

Примечание 2. Для сброса (обнуления) коэффициента коррекции $K_{корр}$ необходимо провести повторную загрузку исходной калибровочной таблицы посредством окна «Калибровочные таблицы» (рис.9).

7. Настройка токового выхода

Для настройки параметров токового выхода (токовой петли 4-20 мА) влагомера нужно выбрать пункт меню «Настройка|Токовый выход...».

После этого появится соответствующее диалоговое окно, показанное на рис.10.

ковь	ій выход		
	Текущие значения		
	Минимальная влажность	0,00	%
	Максимальная влажность	100,00	%
	Новые значения		
	Минимальная влажность		%
	Максимальная влажность		*
	Сохранить		1

Рис.10

В данном окне в верхней части указываются текущие настройки токового выхода.

Новые настройки можно ввести в нижней части.

При этом минимальная влажность соответствует выходному току 4 мА, а максимальная влажность соответствует току 20 мА.

Для того чтобы вновь введенные значения вступили в силу нужно нажать кнопку «Сохранить».

Примечание. Настройки параметров токового выхода не влияет на диапазон измерения и значения влажности, передаваемые по интерфейсу MODBUS и отображаемые в соответствующих окнах программ «SW100» и «SWPro» (рис. 1, 13 и 15).

8. Опции автоматического сохранения результатов измерения

8.1. Автоматическое сохранение спектров

При исследованиях новых материалов или при диагностике работы влагомера может возникнуть необходимость автоматически сохранять файлы конфигурации влагомера без необходимости присутствия оператора. Для этого в программе «SWPro» предусмотрен режим автоматического сохранения файлов конфигурации (файлы конфигурации сохраняются вместе с последним измеренным спектром).

Управление режимом автоматического сохранения производится при помощи специального диалогового окна (рис.11), доступного через меню «Инструменты|Автосохранение...».

≽ АвтоСохранение	
9правление сохраннием	
🔲 Включить	Период 🚺 🛨 сек
Файл для записи результатов	
Conf12_10_2018_15_21_08	
Путь для сохранения	
D:\KFMK\	
ν ηκ	X Cancel

Рис.11

В этом окне можно включить/выключить автосохранение и задать период сохранения.

В поле «Файл для записи результатов» можно проконтролировать путь, по которому будет осуществляться сохранение и текущий шаблон для имени сохраняемого файла .cfg.

Оперативное включение/выключение режима автосохранения может производиться с помощью кнопки «Автосохранение» в главном окне программы.

Примечание. Путь для сохранения файлов совпадает с путем последнего сохраненного файла конфигурации, поэтому для изменения пути сохранения надо выполнить сохранение спектра вручную с помощью меню «Файл|Сохранить...».

8.2. Автоматическое сохранение результатов измерения

Влагомеры не содержат внутреннего архива результатов измерений. Однако программа «SWPro» позволяет вести автоматическую запись результатов измерений в виде текстового

файла в формате данных, разделяемых запятой - csv. Формат полностью поддерживается редактором таблиц MS Excel.

Для управления автоматической записью используется диалоговое окно (рис.12), доступное через меню «Инструменты|Автозапись...».

АвтоЗапись	×	
Управление записью		
🗖 Включить	Период 10 主 сек	
Состав строки с результами		
🔲 Порядковый номер	🔲 Температура	
🔽 Дата	🔲 Резонансная частота	
🔽 Время	🔲 Ксэффициент замедления	
🔽 Относительное время 🔽 Влажность		
Текст заголовка в файле ре Date;Time;RTime;W;	зультатов сач	
🖓 Файл для записи результатов	8	
Результат		
Путь для сохранения		
D:\KFMK\Peзультат.csv		
🗸 ОК	X Cancel	

Рис.12

Запись результатов измерений в файл производится построчно с периодом, указанным в соответствующем поле.

Наличие и назначение отдельных столбцов указан в поле «Состав строки с результатами». Файл может содержать следующие параметры, записанные в соответствующие столбцы:

Данные (столбец)	Описание	Единица	Условное обозначение в
		измерения	заголовочной строке
Порядковый номер	Порядковый номер измере-	-	Ν
	ния с момента включения		
	режима		
Дата	Дата измерения по часам	Год, месяц,	Date
	компьютера	день	
Время	Время по часам компьютера	Часы, ми-	Time
		нуты, се-	
		кунды	
Относительное время	Время с момента включения	Секунды	RTime
	режима записи		
Температура	Температура, измеренная	Градусы	Т
	влагомером	Цельсия	
Резонансная частота	Резонансная частота, изме-	ΜΓц	F
	ренная влагомером		
Коэффициент замедления	Коэффициент замедления	-	К
Влажность	Вычисленная влажность	%	W

Текст в строке «Текст заголовка в файле результатов» записывается первой строкой для того, чтобы впоследствии можно было определить состав данных в файле.

В поле «Файл для записи результатов» указывается имя файла (без расширения). Расширение .csv будет добавлено автоматически.

Оперативное включение/выключение режима автозаписи может производиться с помощью кнопки «Автозапись» в главном окне программы (рис.1).

Примечание 1. Путь для сохранения файла совпадает с путем к папке, в которую последний раз был сохранен файл конфигурации. Поэтому для изменения пути сохранения надо выполнить сохранение спектра вручную с помощью меню «Файл|Сохранить...».

Примечание 2. После остановки записи следует внимательно следить за составом столбцов. При случайном их изменении может произойти путаница в данных. Решением проблемы является задание нового имени файла для продолжения записи.

Примечание 3. При установке флага «Включить» в окне управления (рис.12) и нажатии кнопки «Ок» создается новый файл с указанным в окне именем, что может привести к потере записанных ранее данных. Поэтому для продолжения записи следует задать новое имя для файла записываемых вновь данных.

Примечание 4. Не рекомендуется открывать файл, в который производится запись в режиме включенной автозаписи. Это может привести к ошибке доступа и аварийному завершению работы программы.

9. Программа «SW100» для работы с влагомерами FIZEPR-SW100

Программное обеспечение «SW100» обеспечивают выполнение следующих функций:

- вывод на экран компьютера текущего значения влажности в цифровом виде;
- вывод на экран компьютера измеренной влажности в виде графика, который показывает текущее значение влажности и ее изменение во времени;
- управление влагомером, задание некоторых режимов его работы.

Программа состоит из главного окна, в котором отображается текущее значение влажности в цифровом виде и текущие настройки влагомера, а также дополнительного окна, в котором выводится график техпроцесса (рис.13).

В главном окне программы в верхней его части расположены 6 вкладок, позволяющих управлять режимами работы влагомера и производить его настройку.

В самом низу главного окна находится статусная строка для отображения служебной информации. Она поделена на пять полей:

 в первом поле отображается имя последовательного порта, к которому должен быть подключен влагомер;

- 2) во втором установленная скорость работы порта в бодах (бит/с);
- 3) в третьем адрес влагомера в сети MODBUS;
- в четвертом сообщение о состоянии обмена данными по сети: «Connection OK» – связь есть, «No connection» –связи нет, если данное поле осталось пустым, то не выбран последовательный порт;
- 5) в пятом номер версии внутреннего ПО влагомера («прошивки» влагомера);
- 6) в шестом поле отображается серийный номер влагомера.

9.1. Иденификация ПО

В главном окне программы, в левом верхнем углу отображается иконка программы, название (идентификатор программы) «SW100» и номер версии ПО (см. рис. 14).

9.2. Установка связи с влагомером

Для приема данных от влагомера или внесения каких-либо изменений в его настройки необходимо установить связь с влагомером.

Настройка параметров связи производится на вкладке «Параметры связи» (рис.14).

SW100 (Version 2.9)
Параметры связи Результат измерения Токовый выход Усреднение 💶
Параметры рорта ПК для связи с влагомером
Попт связи Скорость передачи (бод)
СОМ8 💌 19200 💌 2 стоп-бита 💌
Тайм-аут ожидания ответа (мс) 100
Адрес MODBUS 127 Э
Новые параметры связи влагомера
Скорость передачи (бод) 19200 💌 2 стоп-бита 💌 Применить
Адрес MODBUS 127
СОМ8 19200 бод Адр: 127 Connection OK Ver.:35 s/n: 251

Рис.14

Все необходимые настройки для установления связи находятся в верхней части вкладки. После выбора всех необходимых параметров нужно нажать кнопку «Применить».

Об успешной установке связи будет свидетельствовать надпись «Connection OK» в статусной строке внизу окна.

Для изменения сетевого адреса влагомера или скорости обмена в окне «Новые параметры связи влагомера» (на голубом фоне) имеются поля для задания этих параметров. После изменения параметров необходимо нажать на кнопку «Применить».

Подробное описание настроек связи приведено в главе 3 данного описания.

9.3. Вкладка «Результат измерения»

На данной вкладке (рис.15) находятся поля, на которых отображаются непосредственно измеряемые параметры: «Влажность», «Коэффициент замедления» и «Температура».

Двойной щелчок левой кнопки мыши по полю «Коэффициент замедления» позволяет отобразить диэлектрическую проницаемость контролируемого материала.

Кнопка >> позволяет включить дополнительное окно с графиком влажности, в котором можно видеть график изменения влажности во времени.

Кнопка «Калибровка по пустому резонатору» позволяет произвести точную настройку влагомера после его монтажа на объекте заказчика. Для влагомеров сыпучих материалов варианта FIZEPR-SW100.10.4 и подобных им такая калибровка является обязательной. Подробнее см. в главе 5 данного описания.

SW100 (Version 2.9)									
Параметры связи Результат измерения Токовый выход Усред				Усреднение 🚺					
M	loisture								
0,00 %									
ĸ									
h	,000;	2		t=27 deg. C	:				
	<f< td=""><td>> Калибро</td><td>овка по пусто</td><td>му резонатору</td><td>· _</td></f<>	> Калибро	овка по пусто	му резонатору	· _				
<0> Калибровка по сухому веществу									
COM7 19200) бод	Адр: 127	Connection OK	Ver.:35	s/n: 251				
			D 1						

Рис. 15

Кнопка «Калибровка по сухому веществу» позволяет сдвинуть рабочую характеристику влагомера, не создавая новую калибровку. Это может оказаться необходимым в случае, когда контролируемый материал не полностью соответствует калибровке, установленной производителем, но различия не велики. При указанной калибровке необходимо, чтобы используемое для калибровки «сухое» вещество не содержало влагу. Подробнее см. в п.6.3.

После калибровки по обезвоженному материалу влагомер запомнит сдвиг характеристики и будет работать с учётом этого сдвига. Сами калибровочные таблицы при этом не меняются.

Чтобы вернуть калибровочную характеристику к исходному виду (убрать сдвиг) необходимо произвести перезапись калибровочных таблиц согласно п.6.2.

Производить калибровку по пустому датчику или «сухому» веществу следует только в случае, если вы уверены в правильности своих действий.

Кнопки «Калибровка по пустому резонатору» и «Калибровка по сухому веществу» доступны только после входа в «Режим поверки». Переключение в режим поверки производится на вкладке «Метрология» (см. ниже раздел 9.5, рис.18).

9.4. Настройка токового выхода

В данной вкладке (рис.16) указаны калибровочные коэффициенты токовой петли 4-20 мА: минимальная влажность, соответствующая току 4 мА, и максимальная – соответствующая току 20 мА.

Для изменения масштаба токового выхода нужно в поле «Новые значения» задать новые значения минимальной и максимальной влажности и нажать кнопку «Сохранить».

SW1	00 (Version	2.9)			_	. 🗆 🗙			
Параметры связи Результат измерения				Токовый выход	Усреднение	III			
	- -	_							
	Гекущие :	значения			_				
	Минимальная влажность			0,00	%				
	Максимальная влажность			30,00	%				
Новые значения									
				0.00	_				
	Минимальная влажность		0,00	%					
	Максимальная влажность			30,00	%				
Сохранить									
COM7	19200 бод	Адр: 127	Connection C	OK Ver.:35	s/n: 251				
			D 1	(

Рис.16

Примечание. Настройки параметров токового выхода не влияет на диапазон измерения и значения влажности, передаваемые по интерфейсу MODBUS и отображаемые в соответствующих окнах программ «SW100» и «SWPro» (рис. 1, 13 и 15).

9.5. Вкладка «Усреднение»

На вкладке «Усреднение» (рис. 17) можно изменить константу усреднения результатов, которая задает количество измерений, используемых при вычислении среднего значения влажности.

Следует помнить, что время измерения (время получения наиболее достоверного результата) прямо пропорционально значению константы усреднения.

Подробнее см. в п.4.3.

Рис.17

9.6. Вкладка «Метрология»

Вкладка «Метрология» (рис. 18) содержит четыре кнопки: «Калибровочные таблицы», «Загрузить конфигурацию в прибор», «Сохранить конфигурацию прибора в файл», «Режим поверки».

При необходимости изменить калибровочные таблицы следует нажать на кнопку «Калибровочные таблицы», при этом откроется окно с соответствующим названием (см. главу 6).

Рис.18

Кнопка «Загрузить конфигурацию из влагомера в файл» служит для сохранения текущей конфигурации в файл с расширением «.cfg», который используется для контроля работы и диагностики состояния влагомера. При нажатии данной кнопки открывается диалоговое окно, где задается имя файла и место его сохранения. Данный файл можно переслать предприятию-изготовителю для диагностики работы влагомера. В этом же файле сохраняется спектр и график изменения влажности в том объёме, в котором он представлен в данный момент в соответствующем окне.

Кнопка «Загрузить конфигурацию из файла во влагомер» служит для загрузки во влагомер градуировочной (калибровочной) таблицы в виде файла с расширением «.cfg».

Эта опция может быть использована для быстрой перенастройки влагомера, вызванной, например, необходимостью уточнения калибровки под результаты лабораторного анализа контролируемого материала. Подробнее см. в главах 5 и 6.

10. Приложения

Приложение 1

Вид электронного блока ВИГТ.415210.101-02 (взрывозащищенное исполнение) со снятой верхней крышкой

